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ABSTRACT

ABSTRACT

A symbolic processor, samnic ( pronounced "five star" ), to assist
- in the generation of stiffness matrices for finite elements, based on
a recently developed symbolic processor, is presented. Operations are
per formed upon element characteristics and materiai properties in
symbolic form to produce a "matrix template," consisting of the

algehraic expressions generated for the stiffness coefficients as

functions of the problem parameters in literal form. The template may
be evaluated for a given element by binding these symbolic forms to
the numerical values associated with a specific element. The
evaluation process is further facilitated by permitting specification
of a. variety of output formats for the resulting matrix template.

Required input is minimized by automatically suynthesizing the
constituent matrices of - the formulation from user-supplied
specifications of  shape functions, material properties and
stregs-strain relationships, all in symbolic notation,

The processor, written in MACSYMA, is highly interactive providing
prompts for user input, enumeration of available program options, and
extensive on-line assistance. The user may input a "?" in place of a
prompted input to request instructional text. The file handling
capabilities of MACSYMA are wutilized to retain a complete record of
each program run. These records facilitate the handling of
diagnostics, assist in further processing and permit the generation of
statistics valuable for systemr development. Error checking is
accomplished through semantic checks bullt into the program functions
and syntactic checks performed within the MACSYMA operating
environment.

A partial list of user input includes:

1) Method Selection - Isoparametric or generalized coordinate
formulations. 2) Element Parameters - Number of nodes, number of
degrees of freedom per node and related terms. 3) Material Properties
- This matrix may be selected from a library of standard forms (e.g.
plane stress, plane strain) or supplied by the user. 4) Strain
Specification - Components are entered in a user-oriented calculus

notation (e.g. du/dx is input as D(u,x) ). §5) Shape Functions - Shape
functions may contain trigonometric functions and a large class of
intrinsic functions as well as polynomial terms. 6) Output Control
Specification - A description of the output format of the generated
matrix template.

Possible output forms include a tabular display of the matrix
coefficlents In symbolic form and the coefficents in FORTRAN card
image format.

_Background material includes: The objective of this study: The

-
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derivation of the stiffness matrices; A summary of previous research;
A brief description of MACSYMA,

Details of the implementation of oo cover: The design
objectives; Details of the algorithms used and how they were
implemented; A description of st and its limitations.

Sample runs include the formulation, using both the isoparametric
and generalized coordinate methods, of the stiffness matrices for a:
Bar element with constant cross-sectional area; Bar element with
linearly varying cross-sectional area; Constant Strain Triangle with
uni form thickness; Four Node Quadrilateral.

Conclusions are draun and recommendations for future work are
made. Appendix I contains notes on operating and accessing the
processor. X :
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INTRODUCTION

Chapter 1
INTRODUCT | ON

1.1 Objective

The finite element method involves tuwo processes: the generation
of elements, uwhere the computation effort is linear in the number of
elements, and the solution of the discrete system equations, where the
effort increases as some power of the number of degrees of freedom,
and thus of the number of elements. Improvements over the past decade
in decomposition and solution techniques have reached the point where
in many probiems the element generation effort exceeds that for system
solution. Thus, from a practical standpoint there is a great

incentive to attempt to drastically reduce the computational effort in

element generation, the bulk of which is taken up in the numerical
quadrature involved. MWith the large varietu of new elements being
developed or investigated, there is a similar incentive to reduce the
amount of manual algebraic manipulations required before the stiffness
matrices for a new element can be cast in a form suitable for
processing.

This research project was undertaken to develop a mechanism that

would facilitate the generation of element-stiffness matrices 'by

eliminating the numerical quadrature process and by minimizing the
amount of manual algebraic manipulation required.

A symholic processor, vewooe, to assist in the generation of
stiffness matrices for finite elements, based on a recently developed
symholic processor, is presented. Operations are performed upon
element characteristics and material properties in symbolic form to
produce a "matrix template," consisting of the algebraic expressions
for the stiffness coefficients as functions of.the problem parameters
in literal form. The template may be evaluated for a given element by
binding these symbolic forms to the numerical values associated with a
specific element. The evaluation process is further facilitated by
permitting specification of a variety of output formats for the
resulting matrix template, Required input is minimized by
automatical ly synthesizinyg the constituent matrices of the formulation
from user-supplied specifications of shape functions, material
properties and stress-strain relationships, all in symbolic notation.

1.2 Derivation of the Stiffness Matrix
This section introduces the nomenclature, details the required
operations and contains the derivation of stiffness matrices for both

the isoparametric and generalized coordinate formulations.

The stiffness matrix for any finite element is given, in general,

Ll e et b



INTRODUCTION
by (see Desai and Abel 19, Zienkiewicz (101):

t
K] = / BI IC] Bl v (1)

The terms in equation (1) are discussed beloi.

1.2.1 lsoparametric Formulation

For isoparametric elements equation (1) is rewritien in terms of
natural coordinates. In three dimensions this produces

t
K =]//(B: (€] B det([J]) dr ds dt (2)

in wuhich [K) is the stiffness matrix and r, s and t are natural
conrdinates (Desai and Abel [3t). The derivation of the constituent

matrices of equation (2) is given below.

In the isoparametric formulation, the functional relationship

‘describing the element geometry and the element displacement are the
.Samet. :

{x} = { Nlr,s, t) } Xnt - (3)
ful = { N(r;s, t) } {q} (4)

Here {x} represents the cartesian coordinates of the element; {Xnt
is the vector of nodal coordinates in the global coordinate system;
{ul  stands for the values of the displacements interior to the
cliement; {g} represents the nodal displacements and INlr,s, t)] are the
interpolation functions in terms of the non-dimensional natural
coordinates. (Al though the present developnent assumes a global
cartesian system, a similar derivation can be written for other
coordinate systems). The dimensionality of the above relationship is
clarified in the following expansion of equation (4). Letting m = the
numher of nodes,

u {N(r,s, t)!} 8 %] q
; Ixm u ] mxl
v = 4] iN(r,s, t)} 8 q . (8)
1xm v [ mx]
W g 0 iN(r,s, 1)l q
3x1 : 1xm 141 tax1

The next step is to determine the strains uhich are derivalives of
the displacements:

fel = 1B} Iq} (B)

in wuwhich {el represents the strain components defined in the global
coordinate  system; ond  (BY  represents the derivatives of  the -
interpolation functions in equation (4) with respect to the global
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coordinates.

Since these interpolation functions (and hence, the dicplocements)
are functions of the natura! coordinates, differentiation must Dbe
performed by the chain rule. Employing the derivative of equation (3)
with respect to each natural coordinate in the expression for the
chain rule produces:

IaN C[([aN
ar dx
aNy | aN
o 2 (] Lig (7)
ds 33 | lay
l an I | ran
Jt dz
3xm 3xm

in wuhich the Jacobian, [J] , is defined by

dN
-- {{Xnl (Ynl {Zn}}
ar mx3

an :
[J3 = - (8)
ds

&N

Jt

3xm

As the quantity on the right side of equation (7) is required in
the formulation of 1B the Jacobian must be inver ted.
Premultiplying both sides of equation (7) by the inverse of the
Jacobian produces an expression for the derivatives of the shape
functions with respect to the global coordinates. These derivatives
are assembled into the (B! matrix and ordered according to the
specifications given by the strain component vector, lel.

The [C] matrix contains the stress-sirain relationships:
{st = [C] et (3)

Finally, when the volume integral is converted from global to
natural coordinates, the differential volume becones

dx dy dz = det([J)) dr ds dt (10)
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in which [J) s the Jacobian as defined in equation (8).

1.2.2;Génera|jzed Coordinate Formulation

The generalized coordinate formulation begins with a relation
expressing {ul, the displacements internal to the element as a
function.of a set of yec. to be determined generalized coordinates
represented by the column vector, {al:

{ul = S fal (11)

The shape functions, {S}, are polynomials in the global
coordinates (denoted by x) and are chosen to conform to convergence
requirements. In general, the order of the polynomials is such that
the number of generalized coordinates is equal to the total number of
deyrees of freedom of the element. Utilizing this principle, the

displacements interior to the element moy be expressed in terms of the

nodal displacements as follous. Substitulng the nodal coordinates
into the shape functions produces the displacement transformation
matrix, [A)l, which relates the nodal displacements, {gq}, to the
generalized coordinates:

{g} = [A) f{a} : (12)
Solving for f{al

4
{al = A) (g} (13)

and substituting into equation (11) produces the desired
relationship between nodal and element displacements

-1
fub = {SGAIE [A] {q} (14)

This form I8 fundamentally the same as equation (4) for the
isoparametric case.

For a specified set of strain components, the (B} matrix for the
generalized coordinate approach, ({Bal, may be determined by
appropriate differentiation of equation (11).

{fel = {Bal {a} (15)

Since the strains are derivatives of the displacements with
respect to the global coordinates and the shape functions are
polynomials in these coordinates, no coordinate system transformation,
as in equation (7) for the isoparametric case, is required.

The material properties matrix, [C], is the same as in the
isoparametric method.

[,
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Substituting the constituent matrices into equation (1) anrd
integrating with respect to the differential volume, dV, in terms of
the global coordinates, produces a stiffness matrix, [Kal, associated
with the generalized cocrdinates.

t
[Ka) = }.iBa) (C] (Ba} dV (16)

Equation (13) gives the transformation necessary to express the
stiffness matrix with respect to the nodal displacement quantities:.

-1t -1
Kl = ([A) [Kal [A) (17)

Equations (2) and (17) are the expressions for the stiffness
matrix employed in the computations perfomed by the processor.

1.2.3 Formulation of Element Loads, Mass and Stresses

In addition to the stiffness matrix, several other element
matrices are relevant to finite element analysis. These matrices
include the element mass matrix, the stress - displacenment
relationships and the load vectors representing (a) body forces, {b)
sur face tractions and (c) initial strains.

Using the nomenclature introduced in section 1.2.1 and letting IL}
represent the shape functions for either the isoparametric or
general lzed coordinate methods, the formulation of the above matrices
fol lous: :

The element body force vector, {QB! is given by

s
{asl = / L (fb} dv (18)

in which {fbl represents the specified body forces. 1f (L} contains
the generalized —coordinate shape functions, {QB} must be
pre-multiplied by the inverse - tranpose of the [A] matrix of equation
(12). ; '

The element surface traction vector, {QT), is given by

t
amn = ¢ iLh  {ft} dV (1)

in which [{ftl represents the specified surface tractions and
integration is performed over the surface of the element. The
transformation involving the [A] matrix would be applied as in the
formulation of {QB}.

The element initial force vector, {Ql}, is given by
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t
an = / Bl IC) {eil dV (20)

in which {B} stands for the (Bl matrix of equation (B) or the (Bal
matrix of equation (15) and [C] is defined in equation (9). The
vector of initial strains, due for example to thermal effects or
migfit, is represented by f{eil. The transformation involving the [A]
matrix is applied as in the formulation of {OB! and ({(QT}.

JRRY PYICHER SO V- eoang

The element mass matrix, [M], is defined by

R t

t
M = I Ly [m) L} oV (21)

VTR MR VN N o

in which [ml is the specified mass density per unit volume tensor. If
{L} represents the the generalized coordinate shape functions [M] must
be pre- and post-multiplied by the inverse - transpose of [A]l and the
inverse of [A]l repspectively.

bl

The solution of the finite element problem produces the vector of
nodal displacments, {q}. The element stresses, {sl may be calculated
from : :

bl

{s} = [C] (B} {q} (22)

Issues in the implementation of the above quantities are discussed
in section 2.8. '

1.3 Motivation for Symbholic Processing

Numerical integration techniques require the eval:ation of the
integrand of equation (1) at specified points, producing a square
matrix of numerical values of order equal to the number of degrees of
freedom. As constituent terms in this equation are functions of the
nodal coordinates (or are geometric values which must be evaluated at
these points) the evaluation must be performed on -each element
individually. 1f a large number of elements is to be employed in the
finite element model, a significant computational overhead may be
Incurred.

Similarly, numeric evaluation of the inverse and determinant of
~ the Jacobian (equation (7)) and the inverse of the displacement
transformation matrix (equation (13)) also requires nodal coordinates
to be bound to numeric values and thus must be performed upon elements
individual ly.

Using sumbolic manipulation techniques, nodal coordinates may be
retained and operated upon in literal form throughout the computation.
The coordinates are not bound to numerical values and thus may
represent any set of actual (numerical) coordinates. The stiffness
matrix produced is expressed as a template in terms of these unbound
values. It may be readily evaluated for a given set of actual nodal
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coordinates during execution. The computations detailed in the
previous section need only be performed once to generate this general
template.

.

1.4 Summary of Previous Work

‘Several researchers have proposed or investigated the use of
symbolic computing languages for generating finite element stiffness
matrices directly in literal form, to be subsequently evaluated for
the specific numerical values of a given element.

Luft{l} proposes individual special purpose routines with
limitations as to prablem type, element shape, and displacement
function specification. Two example programs are provided. The
discussion for the first, a processor for rectangular elements using
generalized coordinates, indicates that exact integration is being
per formed because the element houndaries correspond to constant values
of X and Y. A program employing an isoparametric formulation
comprises the second example. Since it wutilizes Gauss Quadrature and
the numerical evaluation of the Jacobian, it must be executed for each
element individually. Contributions detalled include: (a) the
introduction of 'intrinsic matrices' (the integral of the product of a
form of the interpolation functions with its transpose) for minimizing
and organizing intermediate calculations and; (b) the detailed
specification of a polynomial manipulator for performing the requisite
operations.

The processor descibed in Gunderson(2} employs a modified
generalized coordinate approach and requires the user to specify the
displacement transformation matrix (i,e. the inverse of the matrix
relating the generalized coordinates to the nodal displacements), The
program makes use of a sophisticated scheme for data organization by
representing the polynomials as multi-dimensional integer arrays and
by defining the matrix operations accordingly.

Taig{3} has presented programs for evaluating the stiffness
coefficients for quadrilateral plate elements with in-plane forces for
the cases of rectangular and trapezoidal panels.

Anderson and Noor {4} and Anderson and Bowen (5! demonstrate the use
of MACSYMA's symbolic integration facilities in the development of
shal low-shell finite elements. In both papers the required integrals
are divided into classes using group theoretic techniques. In
reference {5}, the symbolic expressions are incorporated into a
FORTRAN computer program. A study is made of computation time and
memory requirements.

Wong {6} suggests the use of symbolic computation in the
formulation of finite element stiffness matrices but admits that
CONFORM, the system that he co-authored, Is insufficiently flexible
for the required handling of data structures.

|
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The survey in Jensenil3l of symbolic computing languages and their
applications in mechanics suggests that only MACSYMA possess
sufficient flexibility and power to carry out the objectives.

‘In summary the work to date has been directed towards the
development of either: (a) programs that take advantage of properties
assoclated with a very specific element type ( {3}, {4}, {5} )3 or (b)
processors which synthesize matrices for any element but cannot
automate the entire process ( {1}, {2} ).

1.5 Description of MACSYMA

This section contains a brief description of the capabilities of
MACSYMA, the base language of sswwer, and will serve as background
material for subseguent dicussion of the implementation of the system.

MACSYMA (pronounced "maxima"), Project MAC's SYmbolic Manipulation
system, 1is a large computer program written in LISP devoted to the
manipulation of algebraic expressions. MACSYMA runs under the ITS
timesharing system (originally developed at the M.I.T. Artificial
Intel ligence Laboratory), on the Mathlab PDP-18 cemputer at M.I1.T.
With a syntax resembling ALGOL B8, MACSYMA has capabilities for
manipulating algebraic. expressions involving constants, varitables and
functions [11.

Provisions and attributes of MACSYMA of interest to the computer
|anguage designer include:

(a) The base language is a specially designed, enriched version of
LISP called MACLISP;

{b) The system contains a large body of intrinsic functions;

(c) ALGOL-!ike control structure, compound statements and block
structure permit the incorporation of the intrinsics into user-defined
functions. As in LISP, all functions, user-defined or intrinsic,
return a value;

(d) A set of commands may be pre-stored on a disk file and executed by
means of the 'BATCH' command;

/
{e) An editor, modeled after TECO, can be invoked to edit input or to
correct syntax errors;

(f) Data tupes include atomic variables, lists, arrays, matrices, and
strings. Numeric constants may be integers, ratioral number, floating

point numbers or "bigfloats" (floating point voiues of essentially
arbitrary precision);

(g) Debugging aids and trace functions are provided;

(h) The user may declare and manipulate properties of atoms;

 SR—Y
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(i) Pattern matching facilities exist. These include type testing and
general pattern matching functions which permit the user to test
expressions for combinations of syntactic and semantic patterns and to
automatical ly have variables set to parts of the expressions which fit
the patterns (6]);

(j) It is possible to store expressions, values and functions on disk
files.

Mathematical and computational functions include:
(a) Evaluation and simplification;
(b) Differentiation and integration;
{c) Part selction and substitution;
(d) Solving for roots of an equation;

(e) Matrix functions includingltranspostion. multiplication, inversion
and evaluation of determinants.

(f) Manipulation of rational expressions (expressions which are the
quotient of two polynomials);

(g) Taylor series and power series;
(h) Graphings .

(i) Poisson series;

(j) Tensor manipulation;

(k) Laplace transforms;

(1) Finding the limit of an expression as a constituent variable °
approaches a value from a given direction.

Command lines to MACSYMA are strings of characters representing
mathematical expressions involving equations, arrays, functions, and
programs. Extra spaces, tabs, and all carriage returns are ignored
(except when these occur in quoted strings) (2].

Command |ines are terminated by ";" or "8" (dollar sign). A "3"
causes the command |ine to be evaluated and the result dispayed . The
terminator "8" causes the command !ine to be evaluated but the result
is not displayed [3]. As saener supervises the display of output,
both terminators have the same effect.

The command (input) lines are indexed by labels of the form "(Ci)"
where i is incremented with each new command typed by the user.
Similarly, the results of computations are also indexed by a label of




INTRODUCTION

the form "(Di)"; thus, wusually the ith input-output pair will
be(Ci)-(Di) [(S). Intermediate results (if any) are tagged with line
labels of the form "(Ei)". Line labels may also be used to reference
associated expressions.

Bogen {7} contains a description of the major features and
functions of MACSYMA. Mathlab {8} provides details on logginy into the
system and contains a script,

An Important characteristic is that MACSYMA, in Iits present,
exper imental version, provides a significantly limited amount of
user storage space f9r symbd| ic expressions.

1.6 Organization of This Report

The remainder of this report is organized as fol lous:

Chapter 2 describes the system implementation, including the
Design Consideration and Constraints; Details of the implementation of
the computation of the stiffness matrix; and constituent matrices;
Specification of algorithms; Logic Hierarchy and QOata Flow; Unique

Input and Output Facilities; Error Recovery; and System Limitations.

Chapter 3 contains a number of illustrative examples of runs made
on the system and the verification of results for several test cases.

Chapler & consists of a summary and conclusions giving a final
assessment of the work performed and suggestions for future research.

Appendix | is a brief user's manual to MACSYMA and veseseseve.

10
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SYSTEM IMPLEMENTATION

Py Chapter 2

SYSTEM IMPLEMENTATION

2.1 Implementation Considerations

The considerations in the design of Jerowe were Imposed by the
operating environment of MACSYMA and a set of initial design
decisions. The major design decisions were as follous:

(a) The system had to be easily usable by engineers possessing a
minimum knouledge of its operation.

(b) Ease of maintenance and modification were be emphasized. The
incorporation of improved algorithms and additional methods of
analysis would thus be facilitated.

(c) The modularization of the system was intended to resemble the
steps in the problem formulation.

(d) Consistent with MACSYMA's interactive mode of operation, the
system would operate as an interactive process. Techniques which
provide selective ouput were necessary to override MACSYMA's procedure
of echoing commands and output.

(e) Since computation time increases with the number and complexity of
the expressions, in general, there is no "compute versus store"
tradeoff in MACSYMA. Processes may also become storage bound with
respect to invoked program units, both user-defined and intrinsic.
Whereas user program modules can be deleted in order to free storage,
MACSYMA program segments, once loaded, remain for the duration of the
job. A constraint was also placed upon computation time because the
system is to hbe accessed interactively.

(f) Atl Input.had to be format-free.

(g) Semantic and syntactic checks on input had to performed.
Integration of MACSYMA's syxtax checker and editor was deemed
appropriate. ;

(h) It was decided that a copy should be retained of each session
during uWhich the system is used. Such records would aid in
diagnostics and development.

(i) As the system is to run interactively, a help facllity had to be
provided to supplement error messages generated by semantic checks as
well as to assist in entering input. .

As an alternative to the general method of computation, which

n
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produces the complete matrix template by performing all integrations
and matrix operations symbolically, a hybrid symbolic-numeric scheme
was also considered. In this approach, symbolic operations are used
only to produce the template for the triple product Integrand of
equation (1) (section 1.2), in terms of unbound values of the
coordinates at the numeric quadrature points. At execution time of
the analysis program invoking it, the template is numerically
evaluated at each quadrature point to produce the integral. The
hybrid technique would use the same computation sequence as either the
isoparametric or generalized coordinate formulations, wup to the
symbholic integration processing. ;

‘

2.2 Computation Implementation

Algorithms employed to perform the computations described in
section 1.2 are presented.

2.2.1 Reformulation of the Stiffness Matrix

To minimize computational effort, the formulation of the stiffness
matrices given in equation (2) for the isoparametric method and
equation (17) for the generalized coordinate approach may be
reorganized as fol lous.

For the isoparametric formulation, expressing the inverse of the
Jacobian, [J)], of equation (8) as the adjoint divided by the

determinant, the latter may he factored from (Bl and the transpose of

{B}. Combining these terms with the determinant from equation 18 and
using {BJI to denote the reduced. (B! matrix, yields the following
expression for the stiffness matrix

t
K] = / -------- {BJI [C] 1{BJ} dr ds dt (23)
det ([J))

This formulation produces a greatly simplified {BI matrix 4and
reduces the number of required divisions in the finished matrix
template.

A similar procedure is employed to factor the [A] matrix in the
generalized coordinate method. Letting (A0] represent the determinant
of the submatrices comprising the [A) matrix and [AJ] stand for the
form of the [A] matrix produced by replacing these submatrices with
their adjoint, equation (17) may be reuritten as

1 t

K] m cemeeccceaa- (AJ) [Kal [AJ] (24)
det ([AD) ) s

Once again the computations are greatly simplified.

12
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2.2.2 Reduction of Dependent Natural Coordinates

The number of natural coordinates specified by the wuser must be
equal to or, at most, one greater than the number of global
coordinates specified. In the latter case, the natural coordinates
are not independent.

To facilitate computation the last coordinate is treated as the

dependent one and is replaced by an expression equal to unity minus
the sum of the remaining coordinates.

2.2.3 Geheratlon of the Jacobian

The Jacobian, as defined in equation (8}, is formed using a
refined version of the following algorithm.

Let
NDOF = the number of degrees of freedom per node,
NN = the number of nodes,
Gli] = the name of the ith global coordinate,
IL[i] = the name of the ith natural coordinate,
S = the vector of shape functions,
DIFF, GC and JVAL are local values.
Then
1 for i=1 to NDOF do
2 DIFF=(the derivative of S with respect to L[il)
3 for j=1 to NDOF do
4 GC=GI[}]
5 JVAL8
() for k=1 to NN do
7 JVAL=JVAL + DIFF (k] +GC (k]
8 JACOBIANI(i, jl=JVAL

Note that GC is assigned the name of a global variable (say X), in
line & and, in |line 7, assumes symbolic values of associated nodal
coordinates ( X(k) for k=1 to NN ) simply by appending the subscript,
el 1 5

2.2.4 Formulation of the Inverse of the [A] Matrix

The inverse of the [A] matrix of equations (12), (13), (14) and
(17) is determined using the following:

Expanding equation (12), for the case of 3D cartesian coordinates
produces
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fln) {S1 (X, Yn, Zn) | 0 ¢]

g mxm
vt} = %) 1S2 (¥Xn,Yn,Zn) i 4] : 2

] mxm
fldnl %} (%] {S3 (Xn,¥Yn,Zn)

mxm
3mxl . 3],

in uhich 'm' represents the number of nodes and {Un), {VYnl, {lnl are
the nodal values of the displacements. The vectors (S1t, (S2} and
{52t are the shope functions for each of the degrees of freedom ( U,
V, W), evaluated at the nodal values. That is, the ith row of {Sjl
is the value of the shape function for the jth degree of freedom
evaluated at the ith node.

For the case in uhich each degree of freedom is governed by the
same shape function, all {Sj) submatrices are equal. The inverse of
the [A) matrix, which is of order {( 3m>»x 3m ), can be obtained by
inverting one of the (Sjl matrices of order ((m x m ) and assembling N
copies {uhere N is the number of degrees of  freedom per nede) along
the main diagonal of a previously zeroed matrix. In addition, the
determinant of {Sjl} may be factored from the inverse.

For wunique values of the {Sj}, each submatrix would have to be
inverted. In either case, the computational savings is appreciable:
Rather than inverting a matrix of order ( Nm » Nm )}, only K inverses
of order ( m x m ) need be taken where K is equal to wunity if all
shape functions are the same or N if all are unique.

2.2.5 Processing of Strain Components

MACSYMA’s General Pattern Matching Functions are used to convert
user specifications of strain components into a database from uhich
the (B} matrix for the isoparametric formulation and the {Bal matrix
for the generalized coordinate method are created.

The procedure consists of associating predicates with pattern
variables and defining functions of forms, containing these variables,
against which input moy be tested.

This process permits components to be specified in a calculus
notation. For example, du/dx is input as Dfu,x) and d’u/dxdy may be
entered as D(u,x,y). Currently permissible forms for components are

a v D(u,x)
a v Olu,x) + b v Olu,x)’
u/a

uhere a, b represent scalars,
u represents a displacement variable,
x represents a global coordinate variable.

I.i|, . ' . e NO—
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The present implementation will parse terms specifying second
derivatives but will output a warning that the incorporation of such
derivatives in the B} or {Bal matrices is beyond present

capabilities.

The database is in matrix form where each row contains the
information associated Wwith a term in the specified strain component.
A single component may have more than one algebraic term. Letting
DB(i, j] denote a particular element in the database, the meaning of
the entries in the ith rouw is:

DBli,1] = the number of the component, which is the same as the row ]
I that the term will occupy in the (Bl or {(Bal matrix,

DB[i,2] = the scalar multiple,

DB[i,3) = index of the displacement variable with respect to the list
of displacement variables,

DBli,4] = index of the first global coordinate variable in the
derivative uith respect to the list of coordinate variables, tagged as
the number of degrees of freedom plus unity for components of the
form, "u/a".

DBli,5] = index as In column 4 but for the second coordinate variable
( if any ) in the derivative, set to zero since second derlvatives are
not yet implemented.

As an example, the database for the strain components,
~{ du/dr, u/r, du/dz, du/dz + du/dr |

given the list of displacement and coordinate variables as [ s 23
and [ u, w ] respectively is

1 1 | 1 8
2 1/r 1 3 (*
3 1 & 2 8
4 1 1 2 8
4 1 2 1 8

The strain components would be entered as
{ D(U,R), U/R, DW,2), DWU,2)+D(W,R) }
The user is given the option of either specifying the strain
components using the above notation or by making a selection from a

|library of pre-stored databases.

The current library options are:

(1) User-Supplied Values
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(2) One Dimensional Elasticity

(3). Plane Stress

(4) Plane Strain

(5) Axisymmetric

(B) - Linear. Isotropic Elasticity - 30

Options (3) and (4) reference identical values and are listed as
two separate options only for conformability with the HMaterial
Properties library options (see section 2.7). Option (1) is provided
in the event that the user has designated |ibrary speclfication but
the provided options are not appropriate.

‘Examples of both user and library specifications are presented in
Chapter 3.

2.2.6 Generation of the {B!'Natrices

The synthesis of the (Bl or the {Bal matrix requires the
generation of the appropriate derivatives of the shape functions and
the assembly of these derivatives according to the specification of
the database presented in section 2.2.5.

For the generalized coordinate formulation, the algorithm for the
synthesis of the {Bal matrix may be abstracted as:

'Let

NSC = the total number of stralin components,

NST = the total number of strain terms,

NN = the number of element nodes,

NDOF = the number of degrees of freedom per node,

S = the vector representing the shape function,

D, FACTOR, ROMW, START, and COL are local variables.
then

1 Zero a matrix of order NSC by (NN v NDOF)
for i=1 to NST do
START = (DB[i,3]1 - 1) = NN
if DBLi,4]=NDOF+1
then D = S
else D = (the derivative of S with respect to the
coordinate variable specified in DBILi,4])
FACTOR = DBI(i,2] :
ROW = DBIfi,1)
for j=1 to NN do
COL = START + |
Ba[ROW,COL] = Bal[ROW,COL] + FACTORsD

= = (0 00 ONnLFrwWN

Lol <

The algoritm for the generation of the (Bl matrix for the
isoparametric formulation is presented in two parts: the generation of
the derivatives and the assembly process.

i o i
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To generate a matrix, OTEMP, the rous of which contain the
derivatives of the shape functions, S, with respect to the global
coordinates, perform the following:

Let ;
NDOF = the number of degrees of freedom per node,
NN = the number of nodes,
~ S = the vector of shape functions,
D, JVAL are local variables.
Then
1 Generate ADJJ, the adjoint of the Jacobian
2 for j=1 to NDOF do
3 D = (derivative of S with respect to

the jth natural coordinate)
for i=1 to NDOF do
JVAL = ADJJIL, j]
for kel to NN do
DTEMPLi,k] = DTEMP[i,k] + JVALyD (K]

Append a copy of S (for the Bth derivative)l as the last ( i.e.
NDOF+1st row ) to facilitate processing of terms of the form
"u/a" .

coNO U &

The process of asseﬁbling the derivatives to form the (Bl matrix
is abstracted in the following algorithm which closely resembles its
counterpart in the generalized coordinate approach.

Let

NN, NDOF, OB, DTEMP, NSC, NST = as previouly defined
START1, START2, ROW, FACTOR, ROW, COL are local variables

then

1 Zero a matrix, (B} of order NSC by (NN v NDOF)
2 for i=1 to NST do
STARTL = (OB[i,3] - 1) & NN
START2 = DBIi,4)
FACTOR = DBIi,2)
ROW = DBIli,1]
for j=1 to NN do
COL = STARTL + j
B (ROW,COL]) = BIROW,COL) + FACTOR+DTEMP [STARTZ2, j]

WoeoNON A~ W

Whereas the algorithm for the generalized coordinate approach
generates the derivatives 'on-the-fly', the derivatives referenced in
the algoritm above are prestored in the DTEMP array.

To identify the occurrence of the "u/a" forms, DOB(i,4] and'hence
START2 (line 4) were set to NDOF+l. The algorithm generating DTEMP
appends the Bth derivative of the shape function as the NDOF+lst rou.
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2.2.7 Material Properties Specification

The user has tuo options in the specification of the Material
Properties Matrix of equation (3) (see section 1.2.1):

For the "User-Supplied" option, the user may enter the upper
triangular portion of the material properties matrix in row major
format. Specification of a constant scalar multiple is also accepted.
Editing functions which permit the display or modification of either
the matrix or scalar multiple, are provided:

The "Library" option permits access to a set of pre-stored
material properties matrices. The library options coincide with those
for the strain component specification:

(1) User-Supplied Values

(2) One Dimensional Elasticity

(3) Plane Stress

(4) Plane Strain

(5) Axisymmetric

(6) Linear Isotropic Elasticity - 30

Option (1) is provided in the event that the user has designated
library specification but the provided options are not appropriate.

The library matrices use the symbols, "E" and "NU" to represent
Young's Modulus and Poisson's Ratio respectively. Until an edit
function, which would permit the renaming of these values, is created,
the user should avoid using these names in the specification of other
variables. :

2.2.8 Element Yolume Modification

The nominal elemental volume is calculated as the product of the
differential forms of the global coordinates for the generalized
coordinate approach or of the natural coordinates for the
isoparametric formulation.

The user may modify these forms by inputting appropriate scalar
multiples. For example, in axisymmetric problems, the user might
enter the factor, 2nr, as a multiple of the products of differentials;
drdz. The modification terms, also referred to as Auxiliary Terms,
may contain any syntactically correct .arithmetic expressions.
Examples of the use of element volume modification terms are presented
in Chapter 3.

These values are placed on a stack upon input, The system uses
the same stack to retain auxiliary terms encountered during
computation (for example, the determinant of (Al or of the Jacobian).

18
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2.2.9 Deternination of the Limits of Inteyration

In’ the generalized coordinate formulation, numeric values for the
limits of integration cannot be established until the element s
located in the finite element mesh: only then can moximum and mininum
coordinate values be determined. To circumvent this problem the
limits are taken as identifiers formed by concatlenating the coordinate
variable names with the strings "MIN" and "MAX" (for example XMIN,
XUAX, YRIN and YHAX).  The matrix template produced is thus a function
of these values. Numerical values for the -MIN and -MAX veoriables may
be established at execution time by applying the FORTRAN intrinsics
ANINY and AMAX] to the approp: iate nodal coordinate vector.

The determination of the limits of integration for the
‘isoparametric formulation is conditional upon whether: the natural
coordinates are independent or dependent.

[+ the coordinates are independent, the user specifies limits from
the set: { -1, 0, 1} with the stipulation thal the. lower limit is

less than the upper limit,

If the coordinates are dependent, the louer limit may be specified
but the upper linit is prescribed by the following relationship:

Let N(i) denote the ith natural coordinate. Then

1 e i =l

upper limit of N(i) = i-1 _
1w g WA otheruise
j=1

2.2.18 Integration Processing
The steps  in performing the integration for hoth the generalized
coordinate and isoparamatric methods, as given in equations (2) and

(16) respectively, are comparable:

(a) Form the quadratic form involving the [C] matrix and either (B} or
{Ra} .

(b) Multiply the result by any auxiliary terms or element volume
mocifier terms which are functions of the variables of integation.

(c) Integrate the terms in the upper triongular portion with respect
to each coordinale and evaluate at the limits of integration.

2.3 System Description

19
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2.3.1 Logic Hierarchy

Yeievese is divided into program units call ‘phases.’ Each phase
per forms a specific computational or system bookkeeping task.

A phase consists of a command file and a function file. The
command file is a collection of MACSYMA commands and invocations of
system functions and is executed via the MACSYMA 'BATCH® command.
Phases may, in turn, execute other phases by issuing the appropriate
BATCH command. The function file contains the definition of the
system functions invoked in the command file and all of their external
references. To minimize the amount of storage, the function file is
|oaded at the start of the phase and all functions are deleted before
the phase is exited. In addition, run configuation processes which
perform a trace, dump and break ( see section 2.6 ) are enacted.

The geheral format of a command file ist
(a) Print the header message giving the decription of the phase,
(b) 1f the phase is to be traced, turn on the trace facility,
(c) Load the function file,
(d) Execute the system functions,
(e) If specified, perform a dump,
(f) if specified, perform a break,
(g) Remove all functions loaded from the function file.
2.3.1.1 Hierarchy for the lsoparametric Formulation
This section contains a listing of the phases, in the order in
which they are executed, for the isoparametric formulation. Several
of the phases are common to both formulations.
FSTAR - System Entry Point
The wuser initiates execution of the system by issuing the command,
"BATCH( [FSTAR,CMD,DSK, AK1G1,0ON):'. This phase also opens the disk
file which is to contain a record of the execution and loads a set of

global system functions. The phase then executes phases SYINIT,
SELECT and TERMIN.

SYINIT - System Initialization
Set the operating environment, print opening messages and input the
user identification.

SELECT - Method Selection
Input the wuser specification of the formulation (isoparametric or
generalized coordinate ) and initiate execution of the appropriate
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formulation executive.

ISOEXC - lsoparametric Formulation Executive
Execute phases associated with the isoparametric formulation. This
phase requires no user input.

ISOEIN - lsoparametric Formulation Initialization
Process user specifications for the run configuration (TRACE, DUMP
and BREAK settings).

INPISO - Problem Parameter Specification

Input and process user specifications of the number of element nodes,
number of degrees of freedom per node, number of natural coordinates
and the names of the global coordinates, natural coordinates and
‘displacement variahles.

SFNISO - Shape Function Processor
Input the shape functions and, if necessary, express them in terms of
an independent set of natural coordinates.

BMDATA - B Matrix Database Generation

Process strain component specifications to synthesize the database to
be used in the generation of the (B} and (Bal matrices.
Specifications may be either by. library selection or manual input.

MATERL - Material Prbpertlea Selection ; -
Process specification of material properties by either [ibrary
selection or- manual input.

AUXTER - Auxiliary Term Processor
Input and store the factors modifying the elemental volume.

LIMTIS - Integration Limits
Check if the natural coordinates are dependent or independent. Input
and process limits accordingly.

JACOBN - Jacobian Generation :
Form the Jacobian matrix and its determinant. This phase requires no
input.

BMXISO - (B! Matrix Generation v
Form the (Bl matrix as specified by the database. No user input is
required.

INTISO ~ Integration Processor
See section 2.2.18 Integration Processing. No user Input is required.

DISIPP - Display Pre-processor
Algebraically simplify the results of the integration phase to
facilitate evaluation. User input is not required.

DISPLY - Display Processor
Input wuser specification of the output format of the stiffness

21
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matrix. Process accordingly.

TERHIN.- System Termination
Print:closing messages, close the file containing the record of the
execution and process the specifications for terminating the run.

2.3.1.2 Hierarchy for the Generalized Coordinate Formulation

This section containg a listing of the phases, In the order in
which they are executed, for the generalized coordinate formulation.
For phases which are common to both formulations reference is made to
the description in the previous section. '

FSTAR - System Entry Point
(See previous section)

SYINIT - System Initialization
(See previous section)

SELLECT - Method Selection

(See previous section)

GECEXC -~ Generalized Coordinate Formulation Executive
Execute phases associated with the generalized coordinate
formulation. No user input is required.

GECEIN - Generalized Coordinate Formulation Initialization
Process user specifications foe the run configuration (TRACE, DUMP
and BREAK settings).

INFGEC - Problem Parameter Specification

Input and process the user specifications for the number of nodes,
number of degrees of freedom per node and the names of the
displacement and global coordinate variables.

SFNGEC - Shape Function Processor
Input and process shape functions,

BMOATA - (B} Matrix Database Generation
(See previous section)

MATERL - Material Properties Selectidn
{See previous section)

AUXTER - Auxiliary Term Processor -
(See previous section)

LIMTGC - Integration Limits
Determine the limits of integration.
No user input is required.

AMXINV - Inversion of the [A] Matrix
See the algorithm in section 2.2.4. No user input is required.
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BMXGEC - {Bal Matrix Generation !
Form the {Bal matrix as specified by the database. No user input is
required. :

INTGEC - Integration Processor
See the description in section 2.2.10. No user input is required.

DISGPP - Display Pre-processor
: Algebraically simplify the form of the stiffness matrix to facilitate
evaluation. No user input is required.

1)

DISPLY - Display Processor
(See the previous section)

TERMIN - System Termination
(See ‘the previous section)

I

2.3.1.3 Execution Hierarchy

] Upon completion of a phase, control returns to the module which
issued the BATCH command invoking it. For phases ISOEIN through
DISPLY for the isoparametric method, the invoking module is ISOEXC
which then executes the BATCH command for the next phase in that
sequence. An identical relationship exists between the sequence of
phases GECEIN through DISPLY with respect to GECEIN for the
generalized coordinate formulation. When execution of these
executive phases is completed, control reverts to SELECT. Phase FSTAR
executes phases SYINIT, SELECT and TERIMIN.

This hierarchy is advantageous in that it facilitates the
reorganization of existing phases and the addition of new or
alternative ones.

2.3.2 Data Flow

Data Flow refers to the transfer of data values among the

~ different program segments which comprise the system. The

. designation, ‘'system value', will refer to those values which

represent a major term in the computation and which are not local to
the phase in which they are created.

R

MACSYMA's rules of scope are similar to those implemented in ALGOL
68. Thus, system values are automatically placed in a global pool,
the MACSYMA °'VALUES' list, simply by not declaring then local to any
function. Parameters local to a function appear in brackets at the
beginning of the function body as prescribed by MACSYMA syntax.

To increase programming clarity, the follouwing design decisions
: relating to data flow were made:

(a) System values are returned only through functions explicitly
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invoked in command files. HMACSYMA functions, |ike LISP functions,
can only return a single value.. If multiple values are to be
generated by the same function, they are returned as elements in a
simple list and unpacked in the command file.

(b) Parameters of a function must appear in the ergument list.
Though the system values are global in scope and thus referencable in
the body of any function, this stipulation was made in keeping with
good program modularity.

User specified values of element volume modification factors and
other auxiliary terms are retained on a simple stack. This stack is
also wused to retain values resulting from internal computation (for
example, the determinant of the Jacobian and of the [A] matrix).

The integration processor examines the stack for expressions which
are functions of the variables of integration and multiplies them into
the quadratic form (see section 2.2.1B). The display processors wWill
identify those elements in the stack which are not functions of these
integration variables and collect them into a single expression. This
expression constitutes a common factor of the stiffneas matrix.

A list of system values, the phase in which they are created
(designated in parentheses) and a brief definition followus:

AINVERSE - (AMKINV)
The factored [A] matrix, referred to as [AJ) in section 2.2.1

BMATRIX - (BMXISO, BMXGEC)
The B! or (Bal matrix

BMATRIXDATABASE - (BMDATA)
Database containing the specification for the synthesis of the (Bl of
{Bal matrices (see section 2.2.6)

éREAKPOlNTS - (ISOEIN, GECEIN)
List of the phases for which a BREAK is requested

DELAYSWITCH - (SYSINT)

Batch file processing switch, initialized to 'ON’, necessary to
overcome the Inability of MACLISP, the base language for MACSYMA, to
have more than one file open at a time.

DETAMATRIX - (AMXINV)
Determinant of the [A) matrix

DETJACOBIAN - (JACOBN)
Determinant of the Jacobian matrix

DUMPPOINTS - (ISCCIN, GECEIN)
List of the phases for which a DUMP is requested

DISPLACEMENTS - (INP1SO, INPGEC)

24
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List of the names of the displacements

FACTOR - (DISIPP, DISGPP)
Common’ scalar multiple of FUNCTIONAL

FUNCTIONAL. - (INTISO, INTGEC)
Matrix of stiffness coefficients with common multiples factored

GLOBAI.COORDS - (INPISO, INPGEC)
List of the names of the global (geometry) coordinates

HELP - (SYINIT)
String entered to request the help text, initialized to *?'

JACOBIAN - (JACOBN)
The Jacobian matrix

LIMITS - (LIMTIS, LIMTGC)
Matrix, the rows of which contain the upper and lower limits of
integration

MATERIALSMATRIX - (MATERL) :
Material properties matrix with common multiple factored

MATERIALSHMATRIXMULTIPLIER - - (MATERL)
Common multiple of MATERIALSMATRIX

METHOD - (SELECT)
Integer corresponding to the chosen formulation: 1l=isoparamatric,
2=generalized coordihate

NATURAL.COORDS - (INP]}SO, INPGEC)
List of the names of the natural coordinates

NDOF - (INPISO, INPGEC)
Number of degrees of freedom per node

NUMNATURAL - (INPISO, INPGEC)
Number of natural coordinates

NUMNODES - (INPISO, INPGEC)
Number of element nodes

NUMSTRAINCOMPONENTS - (BMDATA)
Number of strain components

NUMSTRAINTERMS - (BMDATA)
Total number of strain terms; a strain component may contain more
than one algebraic term

PHASENAMES - (]ISOEIN, GECEIN)
List of phase names

25
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SHAPEFUNCTIONS - (SFNISO, SFNGEC)
Matrix, the rows of uhich contain the shape functions

STACK ;= (SYINIT, AUXTER)
Push-doun stack containing the element volume modification factors,
and auxiliary terms

STACKPOINTER - (SYINIT)
Pointer to just below the top element in STACK

TRACEPOINTS - (ISOEIN, GECEIN)
List of the phases for which a TRACE is requested

USERNAME - (SYINIT)
User identification; used to name the Record File

2.4 Help Text

Anticipating that diagnostic messages and prompts may not provide
sufficient information about a particular input value, a mechanism
providing on-line assistance is incorporated. :

The user may answer any prompt With "?" and a brief help text will
be printed at the terminal, The text contains a description-of the
requested input and, if a selection is to be made, an enumeration of
the alternatives.

Upon exiting the help text, control returns to the prompt for the
input. .

2.5 Input and Output Functions

2.5.1 Record File

To assist in diagnostics and system development, a record of each
execution of the system is made. The record is written to a disk file
and contains a copy of all user input;, command executions and system
dumps. . 3

2.5.2 Input and Output Faclilities

In the default mode, MACSYMA commands are echoed at the terminal
as they are typed in if entered interactively or as they are executed
if prestored on a disk file. A command terminated with a semicolon
will display the returned value, while if terminated with a dollar
sign, wWill not. All output to the terminal, excluding the echo of
typed input is suppressed if the suitch, 'TTYOFF' is set to TRUE.
This condition prevails until the switch is reset to FALSE.
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As sesvvere i8 intended to be an interactive system, it is necessary
to selectively suppress output to the user's terminal: the echo of
commands and the automatic display of the results retrieved by
functions is prevented but prompts, help text, error messages and
requested values are displayed. In addition, a complete record of user
input, all command executions and values returned by command level
functions 1is placed on the file containing the record of the
execution. To accomplish- this, the following steps were implemented:

(a) All function calls in the command files are terminated with a
dollar sign thus suppressing the automatic display of returned values.

(b} The TTYOFF switch is set to TRUE in phase FSTAR. System output
functions locally set TTYOFF to FALSE, execute MACSYMA display
commands and then reset TTYOFF. Thus all output is suppressed except
that which is channeled through the system output functions.

(c) Since TTYOFF only affects output to the user's terminal, the file
containing the record of the execution is unaffected.

253 Inpﬁt Characteristics

The use of the MACSYMA 'READ’ function presents some difficulties.
The function will read in and evaluate one expression. [f the input
corresponds to the name of a variable local to the function containing
the READ or one in the global pool, the evaluation step causes the
input expression to be replaced by the value of that variable. The
resolution was provided, upon request from MACSYMA system programmers
in the form of the heretofore undocumented 'READIN' function. The
specification for the READIN function is the same as that for READ
Wwith the exception that the input expression is not evaluated.

All input is format free uwith the exception that expressions must
be terminated with either a semicolon or a dollar sign. It is not
necessary to press the RETURN key. Either upper or lower case may be
used.

2.6 Run Configuration

Run Configuration refers to the staté of the TRACE, BREAK and DUMP
facilities which may be set for individual phases. These features are
intended primarily for system maintenance.

The TRACE facility causes an echoing of the commands in the
command file as they are executed.

If the BREAK suwitch is set for a phase, execution will be
suspended just prior to the phase termination and control will revert
to MACSYMA command level. Execution resumes upon entry of "EXIT;".

Whereas TRACE and BREAK processes are intended purely for system
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maintenance, the DUMP feature may be valuable to the user. 1f UUMP is
set, the system values generated during a phase are displayed at the
user’'s console. Independent of this settiny, these values are aluways
dumped to the file containing the record of the execution. As certain
dumps are quite lenghty, this feature should be used judiciously.

The run configuration may be set in the phases ISOEIN and GECEIN.

2.7 Error Recovery
System error recovery emcompasses' three processes:

(1) Semantic errors are trapped during error checking, by system
functions. A diagnostic is printed and the wuser is prompted to
re-enter. If the diagnostic offers insufficient explanation, the user
may - ansuwer the prompt with "?;" which is the request for the help
text.

(2) Syntactic errors are trapped by MACSYMA. The erroneous input is
echoed along with a pointer indicating the subexpression in error. A
diagnostic is printed and the message, "Please rephrase or edit," is
displayed. The wuser may either retype the input or press the escape
key to enter the MACSYMA editor. The editor, a derivative of TECO, is
documented in Bogen{7}.

(3) Errors which cannot be trapped by either. of the above procedures
are associated wWith a system failure and are fatal. The system will
attempt to shutdown as neatluy as possible by preserving the global
pool of values and closing the file containing the record of execution
so that diagnostics may be run. A message directing the wuser to

. sources of assistance is displayed and the user Is queried for the

system termination procedure as in a normal run.
2.8 Limitations

The limitations of the present system are:
(a) Each node must have the same degrees of freedom;

(b) Each degree of freedom must be represented by the same shape
function;

(c) Allowable forms for the specification of strain companents are:

a v D(u,x)
a v Dfu,x) + b s Dlu,x)
u/a
uhere 'a’' and 'b’' are scalars, 'u’ represents a displacement variable

and 'x' represents a geometry (global coordinate) variable.

(d) Problem size is |limited by available list space on the computer
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suppor ting MACSYMA.

Minor modification will permit the processing of second
derivatives andprovisions in the program have been incorporated to
facilitate the elimination of restrictions (a) and (b).

2.9 Implementation of Element Loads, Mass and Stresses

The present version of the processor may be extended to permit the
implementation of the quantities defined in section 1,2,3.

Many of the constituent matrices are formulated as part of the
synthesis of the stiffness matrix. These include the (B} and = [C]
matrices and the matrix of shape functions. The remaining constituent
matrices may be taken from user specification of (m), {fbl, {ft}, feil
and the names of the nodal displacements.

Integration functions can be used to evaluate the reguired volume
and surface integrals.
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Chopter 3

ILLUSTRATIVE EXAMFLES

This chapter presents a number of illustrative examplcs processed
on e, The bulk of the presentation consists of the execution
record. Comments are placed in angle brackets ( "<", ">" ) and uere
not part of the execution.

The internal storage scheme for the stiffness matrix is a vector,
"FUNCTIONAL", containing the elements of the lower triangular portion
in rou major format and a variable, "FACTOR", containing. the common
multiple of each element. In the verification sections for each
example, these quantities are retrieved and MACSYMA functicons are used
to recast the results into alternate forms and tc establish
identities.

MACSYMA functions employed in the verification sections include
EV, which evaluates its first argument in the environment specified by
the remaning arguments, and FACTOR, wuhich factors its argument into
factors irreducible over integers. (The function, FACTOR, should not

be confused with the swewvx variable, FACTOR. They are readily’

“distinguisable in that the function requires an argument. in
parenthesis). Details of these and the other functions may be found
in reference {7}. :

The examples are presented as fol lous:

Section 3.1 - Bar Element with Uniform Cross-Sectional Area
Part 3.1.1 - Generalized Coourdinate Fornulation

Part - 3.1.2 - lsoparametric Formulation

Part 3.1.3 - Comparison and Yerification

Section 3.2 - Bar Element with Linear Variation of Cross-Sectional
Area

Part 3.2.1 - Generalized Coordinate Formulation

Part 3.2.2 - lsoparametric Formulation

Part 3.2.3 - Comparison and Yerification

Section 3.3 - Constant Strain Triangle (CST) with Uniform Thickness
Part 3.3.1 - Generalized Coordinate Formulation

Part 3.3.2 - Isoparametric Formulation

Part 3.3.3 - Comparison and Verification

Section 3.4 - Four Node Quadrilateral

Part 3.4.1 - Generalized Coordinate Formulation
Part 3.4.2 - Calibration

Part 3.4.3 - Jsoparametric Formulalion

30
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Ihe final section is devoted to a discussion of the algebraic form
of the results,
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TLLUSTRATIVE EXAMPLES

3.1 Bar Elemen with Uniform Cross-Sectional Area

<The /bar element has one degree of freedom, in the axial direction,
and is modeled using a linear displacement function.>

3.1.1 Generalized Coordinate Formulation

<Immediately subsequent to the LOGIN procedure, a copy of MACSYMA is
loaded ( via ":A") and the BATCH command is issued 1o initiate
execution of i, >

ves A

This is MACSYMA 266

FIX266 8 DSK MACSYi1A being loaded

lnading done

(C1)- BATCH( [FSTAR,CMD, DSK, AK1G] ,ON) 3
(C2) TTYOFF:TRUES

ve SYSTEM INITIALTZATION s
WELCOME TO sevierete YERSION 1,8

It is nouw THURSDAY DECEMBER 1,1977 18:2:10
The current file is [SYINIT, FCN]
The current device and username is [DSK, AK1G]

Report problems to

AlLAN R. KORNCOFF

DEPT. OF CIVIL ENGINEERING
CARNEGIE-MELLON UNIVERSITY
CMU-1BA, AKL1G

Terminate all input uwith a SEMICOLON - '3’
Input '?;° for HELP

Input your LOGIN NAME
?

AK].G; : ' i
15 AKLG correct ?° (YES: or NO;)
i .

YES;

GREETINGS AK1G
: ~ve METHOD SELECTION

fhe available formulations include
(1) THE 1SOFARAMETRIC METHOD
(2) THE GENERALIZED COORDINATE METHOD
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Please enter the number of the method chosen (1 OR 2). ) j
¥
EéNERALIZEO COORDINATE FORMULATION _ |
ve GENERAL 1ZED COORDINATE FORMULATION EXECUTIVE =
ve GENERALIZED COORDINATE -FORMULATION INITIALIZATION
Do you wish to set DUIMP, BREAK or TRACE POINTS
2

\.,ES; '

1. GECEIN 2. INPGEC 3. SFNGEC 4, BIDATA
5. MATERL 6. AUXTER 7, LINTGE 8. AMXINV

9. BMXGCC 18, INTGEC 11, BISGPP J2. BESPLY
SET DUNMP POINTS

Designate selected PHASES by entering

the associated integer INDEX or 'ALL' for all phases.
Type "END' to TERMINATE.

?

23

?

4;

?

5;

?

END;

1. GECEIN 2. 1NPGEC 3. SFNGEC 4, BMDATA

5. MATERL 6. AUXTER 7. LINTGC 8. AMXINV

9. BMXGEC 10. INTGEC 11. DISGFP 12. DISPLY

SET BREAKFOINTS

Designate selected PHASES by entering

the associated integer INDEX or 'ALL’ for all phases.
Type 'END’ to TERMINATE.

?

N
1. GECEIN 2. INPGEC 3. SFNGEC 4. BHDATA
5. MATERL 6. AUXTER 7. LIMIGC 8. AMXINV

3. BMXGEC 10, JNTGEC 11. DISGFP 12. DISPLY
SET TRACE POINTS )

Designate selected PHASES by entering

the associated integer INDEX or 'ALL' for all phases.
Tuype 'END’ to TERMINATE.

?

END;
% PROBLEM PARAMETER SPECIFICATION - GENERALIZED COORDINATE s

] Input the NUMBER OF ELEMENT NODES
) ? . \.
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~
<8

Input the NUMBER OF BEGREES OF FREEDOM PER NOOE ]
: : 2 ;
2 i }
Input the vector of the NAMES OF THE GLOBAL COORDINATES ;
There should be 1 elements :

ELEMENT ) =
X3

Input the vector of the NAMES:OF THE DISPLACEMENT VARIABLES
There should be 1 elements

ELEMENT 1 =

Us

DUNMP- FOR TRPGEC :
NUMNODES = 2

NOOF = 1
GLOBAL.COORDS = (X]

DISPLACENMENTS = [U]

s SHAPE FUNCTION PROCESSOR - GENERALIZED COORDINATE s

ENTER the terms of the SHAPE FUNCTION ordered from
GENERALLIZED COORDINATE 1 through coordinate 2.
ELEMENT 1 =

1;

ELEMENT 2 =

X3

< This input represents the displacement function: u = al + aZwx , in
uhich "al" and "a2" are the generalized coordinates.>

SHAPE FUNCTION MODIFICATION
The OPTIONS are

(1) DISPLAY THE SHAPE FUNCTIONS

(2) MODIFY THE SHARPE FUNCTIONS

(3) TERMINATE THIS FUNCTION .
Enter the NUMBER ASSOCIATED with the CHOSEN OPTJON
?
0

The terms of the SHAPE FUNCTION are
Term 1

Term 2
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X

Enter the NUNMBER ASSOCIATED with the CHOSEN OPTION
2 S
3:

v B MATRIX DATABASE GENERATION -

The ORTIONS for specifying STRAIN COMPONENTS are
(1) USER-SUPPLIED VALUES
(2) LIBRARY VALUES
Please ENTER the NUMBER ASSOCIATED WITH YOUR SELECTION
2
21

The LLIBRARY OPTIDNS for SPECIFYING STRAIN CONMPONENTS are
(1) USER-SUPPLIED VALUES
(2) ONE DIMENSIONAL. ELASTICITY
(3) PLANE STRESS
(4) FLANE STRAIN
(S) ANISYMIETRIC
(5) LINEAR. ISOTROFIC ELASTICITY - 3D
Please ENTER the NUMRER ASSOCIATED WITH YOUR CHOICE
-
2;

< The library contains pre-stored strain components specifications in
the database format described in section 2.2.5.>

DUMP FOR BIDATA
BMATRIXDATABASE = [1 1 1 1 8

NUMSTRAINTERNS = 1

NUMSTRATNCOMPONENTS = 1

% MATERIAL PROPERTIES SELECTION s

The options for the selection of the MATERIAL PROPERTIES MATRIX are
(1) USER-SUPPLIED MATRIX :
(2) LIBRARY MATRIX

Please enter the NUMBER ASSOCIATED WITH YOUR SELECTION

? 4

2;

The LLIBRARY OFTIONS for SPECIFYING MATERIAL PROPERTIES are
(1) USER-SUPPLIED VALUES
(2) ONE DIMENSIONAL ELASTICITY
(3) PLANE STRESS
(4) PLANE STRAIN
(S) AXISYMMETRIC
(5) LINEAR ISOTROPIC ELASTICITY - 3D
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Please ENTER the NUNMBER ASSOCIATED WITH YOUR CHOICE
?

& A
DUMP FOR MATERL
-MATERIALSMATRIX = [ 1 ]
MATERIALSMATRIXMULTIFLIER = E

4

v AUXILIARY TERM PROCESSOR s

ENTER ELEMENT VOLUME MODIFICATION FACTORS OR AUXILIARY TERMS
TYPE 'END;' to TERMINATE

? ;

A

?

END;

AUXILIARY TERM MODIFICATION
The OPTIONS are
(1) DISPLAY THE AUXILIARY TERMS
(2) MODIFY AN AUXILIARY TERM
(3) TERMINATE THIS FUNCTION
Enter the NUMBER ASSOCIATED with the CHOSEN OPTION
?
EH

e INTEGRATION LIMITS - GENERALIZED COORDINATE s

-,

'« INVERSION OF MATRIX, A

-,

v B MATRIX GENERATION - GENERALIZED COORDINATE s

v INTEGRATION PROCESSOR - GENERALIZED COORDINATE s

v DISPLAY FRE-PROCESSOR - GENERALiZED COORDINATE

v OISPLAY PROCESSOR -+

The options for OUTPUTTING the STIFFNESS MATRIX are
(1) Upper triangular portion in algebraic format

(2) FORTRAN CARD IMAGE format
ENTER the NUMBER ASSOCIATED with YOUR SELECTION.

S BN

’
.

Enter the FORTRAN ARRAY NAME for the STIFFNESS MATRIX
Py

STIFF; :
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Multiply each coefficient by
. v,‘A)'(E/ (X(2) =X (1)) yese2
The STIFFNESS MATRIX is
STIFF(1,1) = - (XMIN-XMAX)
STIFF(2,1) = XMIN-XMAX
STIFF(3,1) = ~(MIN-XMAX)
se SYSTEM TERMINATION

That's all for nou, AKI1G
It is now 12/1/77 18:13:57

Accunulated CPU TINME = 18348 MSEC

A record of this session is recorded in file [AK1G, >, DSK, USERS 1

The options for exiting the system are

(1) TERMINATE THE RUN
(2) TERMINATE THE RUN AND THE JOB
(3) TERMINATE THE RUN, THE JOB AND LOGOUT

Please enter the number of the option chosen (1, 2 or 3)

?

3:

Accumulated CPU TIME = 18642 MSEC
TERMINATE AND LOGOUT

: LOGOUT

<The system automatically issued the ":LOGIUT" command.
the termination procedure are given in the Appendix.>

<Option 1 of the DISPLAY PROCESSOR would provide

output:>

The options for OUTPUTTING the STIFFNESS MATRIX are
(1) Upper triangular portion in algebraic format
(2) FORTRAN CARD IMAGE format

ENTER. the WUMBER ASSOCIATED with YOUR SELECTION.

?

1

Multiply each coefficient by

Gl . Lo

Details of

following
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RON 1,/COL 1
- (XMIN - XIAX)

RON 2, COL 1
XMIN - XIAX

1

ROW 2, COL 2

- (XMIN = XN1AX)

3.1.2 Isoparametric Formulation

v SYSTEM INITIALLIZATION »
WELCOME TO sesescvese VERSION 1.0

It is nou THURSOAY OECEMBER 1,1977 1:41:26
The current file is [SYINIT, FCN]
The current device and username is [DSK, AK1G]

Report problems to

ALLAN R. KORNCOFF

DEPT. OF CIVIL ENGINEERING
CARNEGIE-MELLON UNIVERSITY
CMU-18A, AK1G

Terminate all input with a SEMICOLON - ';°'
Input '?;° for HELP

Input your LOGIN NAME

2

AK1G;

s AK1G correct ? (YES; or NO;)
”

QES:
GREETINGS AK1G

v METHOD SELECTION s

The available formulations include
(1) THE 1SOPARAMETRIC METHOD
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(2) THE GENERAL1ZED COORDINATE 1 THOU

Please enter the number of the method chosen (1 OR 2).
?

1: -
1SOPARAMETRIC FORMULATION

ve 1SOPARAMETRIC FORMULATION EXECUTIVE
ve 1SOPARARMETRIC FORMULATION INITIALIZATION

Do you uish to set DUMP, BREAK or TRACE FOINTS
2
NO;

ve PROBLEM PARAMETER SPECIFICATION - ISOPARANMETRIC s
lnpu; the NUMBER OF ELEMENT NODES
Input tﬁc NUMBER OF DEGREES OF FREEDOM PER NODE
L
anut the NUMBER OF NATURAL COORDINATES
1;

Input the vector of the NAMES OF THE NATURAL COORDINATES
There should be 1 elements

ELEMENT 1 =

L

Input the vector of the NAMES OF THE GLOBAL COCRDINATES
There should be 1 elements

ELEMENT 1 =

X

Input the vector of the NAMES OF THE DISPLACECMENT VARIABLES
There should be 1 elements

ELEMENT 1 =

U;

% SHAPE FUNCTION PROCESSOR - ISOPARAMETRIC

ENTER the terms of the SHAPE FUNCTION ordered from
node 1 through node 2.

The 2 elements will be prompted for

ELEMENT 1 =

Srvell-L);

ELEMENT 2 =

-5\':(14].) H
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< This input represents the displacement equation:
u = B.5¢ll1-1) + B.5(1+)) .>

SHAPE FUNCTION MODIFICATION
The OFTIONS are
(1) DISPLAY THE SHAPE FUNCTIONS
(2) MODIFY THE SHAPE FUNCTIONS
(3) TERMINATE THIS FUNCTION
Enter the NUMBER ASSOCIATED with the CHOSEN OPTION

?
3
N 1; '
The terms of the SHAPE FUNCTION are
Term 1
B.5%(1 - L)
Term 2

0.5 (L + 1)

Enter the NUMBER ASSOCIATED with the CHOSEN OFTION
?

3;
ye B MATRIX DATABASE GENERATION +

The OPTIONS for specifying STRAIN COMPONENTS are

(1) USER-SUPPLIED VALUES

(2) LIBRARY VALUES
Please ENTER the NUMBER ASSOCIATED WITH YOUR SELECTION
2

o)
<3

The LIBRARY OPTIONS for SPECIFYING STRAIN COMPONENTS are
{1) USER-SUPFPLIED VALUES
(Z) ONE DIMENSIONAL ELASTICITY
() PLANE STRESS
(4) PLANE STRAIN
(5) AXISYMMETRIC
(8) ILINEAR ISOTROPIC ELASTICITY - 3D
Please ENTER the NUMBER ASSOCIATED WITH YOUR CHOICE
?
23

v IMATERIAL. PROPERTIES SELECTION s

The options for the selection of the MATERIAL PROPERTIES MATRIX are
(1) USER-SUPPLIED MATRIX
(2) LIBRARY MATRIX

Please enter the NUMBER ASSOCIATED WITH YOUR SELECTION

[

-~
&5




JELUSTRAT)VE EXANMPLES

The LLIBRARY OPT)ONS }or SPECIFYING MATERIAL PROFPERTIES are
(1) USER-SUPPLIED VALUES
(2) /ONE DIMENSIONAL ELASTICITY
() PLANE STRESS
(4) PLANE STRAIN
(5) AXISYMMETRIC
(6) LINEAR 1SOTROPIC ELASTICITY - 3D
Flease ENTER the NUNBER ASSOCIATED WITH YOUR CHOICE
?
2%

v AUXILTARY TERM PROCESSOR s

ENTER ELEMENT VOLUIME MODIFICATION FACTORS OR AUXILIARY TERNMS
TYPE: "END; ' to TERMINATE

?

A

?

END;

AUXILTARY TERM MODIFICATION
The OPTIONS are
(1) DISPLAY THE AUXILIARY TERMS
(2) MODIFY AN AUXILIARY TERM
(3] TERMINATE THIS FUNCTION
Enter the NUMBER ASSOCIATED with the CHOSEN OPTION
-

33

v INTEGRATION LIMITS - ISOPARAMETRIC

ENTER the LIMITS OF INTEGRATION for NATURAL COORDINATE, L
LOWER LIMIT =

?

=T :

UPPER LINMIT =

2

1;

ve JACOBIAN GENERATION - ISOPARAMETRIC s
v B MATRIX GENERATION - ISOPARAMETRIC s

¢ INTEGRATION PROCESSING - 1SOFARAMETRIC s

)

ve DISPLAY PROCESSOR

The options for OUTPUTTING the STIFFNESS MATRIX are
(1) Upper triangular portion in algebraic format
(2) FORTRAN CARD IMAGE format




4 !
ILLUSTRATIVE EXAMPLES 3
ENTER the NUMBER ASSOCIATED  with YOUR SELECIION. .
: ? ;
k- - AT :
g Nuli{plg each coefficient by
1 : 2+AvE
X =X .
: 2 1 “
l: ROW 1, COL 1 ' 4 ‘J
i ]
- y
2
ROW 2, COL 1 1
1 £
2 -
ROW 2, COL 2 3
. 1 .
2 : %
< SYSTEM TERMINATION % ¥ : 3
That's all for now, AKIG ‘ g
It is now 12/1/77 1:45:24
Accumulated CPU TIME = 17840 MSEC E
A record of this session is recorded in file [AK1IG, >, DSK, USERS 1 3
<Display option 2 produces:> B
The options for OUTPUTTING the STIFFNESS MATRIX are 3
(1) Upper triangular portion in algebraic format
(2) FORTRAN CARD IMAGE format

" ENTER the NUMBER ASSOCIATED with YOUR SELECTION.
?
2

Enter the FORTRAN ARRAY NAME for the STIFFNESS MATRIX
2
STIFF;
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Multiply each coefficient by
 J20NE/ (X (2) =X (1))
The STIFFNESS MATRIX is

STIFF(1,1) = 1/2
STIFF(2,1) = -1/2
STIFF(3,1) = 1/2

3.1.3 Comparison and Verification

<The files, (%1G,vals) and (%1l,vals) contain the values generated
during the runs in sections 3.1.1 and 3.1.2 respectively. For the
purposes of comparison, for the aeneralized coordinate formulation,
the coordinate, "X", is taken to be a minimnum at node 1 and a maximum
al node 2 ( i.e. x{1)<x(2) ), >

time= 4 msec.
(1) [0SK, AK1G])

(C2) LOADFILE(%11,VALS);

%11 VALS DOSK AK1G being loaded
leading done

time= 291 msec.

(D2) DONE

(C3) FUNCTIONAL
time= B msec.

N -

(N3)

N -
— e e e e e et e et e

L i B B A I N I N ]

N1 -

(C4) FTL:FUNCTIONALFACTOR;
time= 15 msec.

— et d e s

(
[
(
. ( 2 1
(
(

43




3 4 44
i
TLLUSTRATIVE EXAMPLES
N4 e E ]
[ 2 (X -X)]
( 2 1)
2 S [ ]
N [ AE ]
[ emeeee- ]
{ X -X ]
[ 2 1 ]
£ ' (CS) FACTOR (%)
{ time= 78 msec.
s : [ AE ]
| ]
i Erade v 6 1 o2l
; FLeg e )
;‘ [ )
i : [ AE ]
: (0S) [ - ——==——- ]
[ X -X 1
[ 2 1]
{ ]
[ AE ]
[ -~ ]
X ~% 13
(2 1]

< This is the lower triangular portion of the stiffness matrix for the
isoparametric formulation expressed in row major format. >

(C6) LOADFILE (%1G, VALS);

%1G VALS DSK AK1G being loaded
loading done

time= 258 msec. .
(DB) DONE

(C7) FTL2:FUNCTIONAL+«FACTOR;
time= 15 msec.

[ AE (XMIN - XMAX) ]
[ e ]
( £ )
( X -X) ]
[ 2 1 ]
( ]
[ AE (XMIN - XMAX) )
[ cmmmmmmmmmemeeees ]

(07) ( 2 ]
( X -X) )
( 2 1 ]
( ]
( ]
( :

&
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[ (X - X) ]

[ 2 1 ]
?f - < The,” XMIN and XMAX terms of the gencralized coordinate stiffness
&) motrix in expression (D7) are evaluated at X(1) and X(2) respectively’

and the veclor is simplified. >

(C8) FACTOR(EV (%, ¥XMIN=X[1},XMA¥=X[2])):
time= 129 msec.
{ AE ]

-—

(08)

el e T I I I N )
]
1
]
]
]
1
1
1
—

N
—
— e o

-~
—

1
]

— —
x
N
i
x
—

< This is the lower '~ triangular portion of the stiffness matix for the
generalized coordinate formulation in row major format, evaluated at
the boundary conditions. It is identical to the expression in (DS)
for the isoparametric formulation. >

(C3) CLOSEFILE(%VER,C1);
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3.Z2 Bar Element with Linear Variation of Cross-Sectional Area
3.2.1 Generalized Coordinate Formulation

< This run was identical to that of section 3.1.1 with the exception
that the cross-sectional area of the bar varies linearly from a value
of A(l) at node 1 to a value of A(2) at node 2. The input unique to
this execution is shown below, > ‘

v AUXILTARY TERM PROCESSOR s

ENTER ELEMENT YOLUME MODIFICATION FACTORS OR AUXILIARY TERMS
TYPE 'END;' to TERMINATE
2

kX(Z)»X)*A(l)/(X(Z)—X(l)) + (X=-X(1))xA(2) 7 (X(2)-X (1))
-

END;

AUXILIARY TERM MODIFICATION
The OPTIONS are
(1) DISPLAY THE AUXILIARY TERMS
(2) MODIFY AN AUXILIARY TERM
(3) TERMINATE THIS FUNCTION :
Enter the NUMBER ASSOCIATED with the CHOSEN OPTION

?
1
The AUXILIARY TERMS are
Term 1
A(2) (X - X(1)) A(l)(X(2) - X)
——————————————— + -———————————— -
X(2) - X(1) X(2) - X(1)

Enter the NUMBER ASSOCIATED with the CHOSEN OPTION

?

3

< Both options of the display are: >

The options for OUTPUTTING the STIFFNESS MATRIX are
(1) Upper triangular portion in algebraic format
(2) FORTRAN CARD INMAGE format

ENTER the NUMBER ASSOCIATED with YOUR SELECTION.

p

1;

Multiply each coefficient by

46
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2
" <)

k- : i
; 7.

ROW 1, COL 1

- OMIN = XMAX) (A(2) XMIN = A(1) XMIN + A(2) XMAX - A(1) XMAX

F2AM X 2% ACZHAR2 X -X 1)

4ij s 2 1 iz 1

ROW 2, COL 1
A(L) XMAX

(XMIN = XMAX) (A(2) XMIN - A(1) XMIN + A(2) X(MAX

+2A) X -2X A@N/E2 X -X))
2 1 2 1

ROW 2, COL 2
- (XMIN - XMAX) (A(2) XMIN - A(1) XMIN + A(2) XMAX - A(l) XMAX

+2AL) X -2X A2))/7(2 (X - X))
2 1 2 1

The options for OUTPUTTING the STIFFNESS MATRIX are
(1) Upper triangular portion in algebraic format
(2) FORTRAN CARD IMAGE format

ENTER the NUMBER ASSOCIATED with YOUR SELECTION.

?

23

Enter the FORTRAN ARRAY NAME for the STIFFNESS MATRIX

?

STIFF;

Multiply each coefficient by

E/ (X(2) =X (1) ) yes:2

The STIFFNESS MATRIX is

STIFF(1,1) = = (XMIN-XMAX) 52 €A (2) s XMTN-A (1) 5X((TINSA (2) o XOAX=A (1) 5XMAY
1 +24A (1) 2 X (2) =25X (1) %A (2) ) / (25 (X(2) =X (1) )) :
STIFF(2,1) = (XMIN=YXMAX) 2 (A(2) «XMIN=A (1) =XMIN+A (2) s« XMAX=A (1) X FIAX -+
1 20A (1) 59X (2) =29 X (1) 7eA (2) ) / (25 (X(Z2) =X (1)) )

STIFF(3,1) = = (XMIN=XMAX) s (A (2) weXMIN=-A (1) 5eXF N+A (2) 2XPAX=A (1) v XPAN
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‘. | ; 1 +2veA (L) v X (2) =24 X (L) wA(2) ) / (29 (X (2) =X (1)) : i
b S ' J
Y 3.2.2 lsoparametric Formulation
< The input for this case is the same as that for the generalized |
coordinate formulation. The display options are: >
The options for OUTPUTTING the STIFFNESS MATRIX are }
¢ : (1) Upper triangular portion in algebraic format A
£ (2) FORTRAN CARD IMAGE format [
ENTER the NUMBER ASSOCIATED with YOUR SELECTION. ‘
?
1 |
. i
Multiply each coefficient by i
' 2 E
""""" i
X - X i
2 1
ROW 1, COL 1
A(2) + A(1)
4
ROW 2, COL 1
A(2) + A(1)
4
ROW 2, COL 2
! A(2) + A(l)
4

The options for OQUTPUTTING ‘the STIFFNESS MATRIX are
(1) Upper triangular portion in algebraic format
(2) FORTRAN CARD IMAGE format

ENTER the NUMBER ASSOCIATED with YOUR SELECTION.

p

2:
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X -X)

ROW 1, COL 1
- (XMIN = XMAX) (A(2) XMIN - A(L) XMIN + A(Z2) XMAX - A(1) XMAX

+ 2 A0 X -2X A2 X -X))
: 2 1 2 1

ROW 2, COL 1
(XMIN = XMAYX) (A(2) XMIN ~ A(L) XMIN + A(2) XMAX - A(L) XMAX

+2A1) X -2X A2 X -X))
2 1 2 1

ROW 2, COL 2
- (XMIN - XMAX) (A(2) XMIN - A(1) XMIN + A(2) XMAX - A(l) XFMAX

+ 2 A1 X -2X A2/2 X - X))
2 1 2 1

The options for OUTPUTTING the STIFFNESS MATRIX are
(1) Upper triangular portion in algebraic format
(2) FORTRAN CARD IMAGE format

ENTER the NUMBER ASSOCIATED with YOUR SELECTION.

2

2;

Enter the FORTRAN ARRAY NAME for the STIFFNESS MATRIX
?
STIFF;

Multiply each coefficient by
E/ (X(2) =X (1)) ves:2

The STIFFNESS MATRIX is

STIFF(1,1) = = (XAIN-XMAX) s €A (2) s XTTN-A (1) veXMTIN+A (2) £ XOAX=A (1) #XMAY
1 +20A (1) 2X (2) =28eX (1) %A (2) ) / (25 (X(2) =X (1))
STIFF(2,1) = (XMIN=XMAX) = (A (2) s XMIN-A (1) 2XMIN+A (2) seXPFAY=A (1) sV IAX+
1 20A(1) X (2) =29X (1) vA(2) ) / (25 (X(Z2) =X (1) ))
STIFF(3,1) = = (XMIN-XMAX) s (A (2) weXMIN-A (1) veXMIN+A (2) 2XMAX=A (1) veXPMAX
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Enter the FORTRAN ARRAY NAME for the STIFFNESS MATRIX

?
STIFFy

Multiply each coefficient'bg

2uk/ (X(2)-X (1))

The STIFFNESS MATRIX is

STIFF(1,1) = (A(2)+A(1))/4
STIFF(2,1) = -(A(2)4A(1)) /4
STIFF(3,1) = (A(2)+A(1))/4

3.2.3 Comparison and Yerification

< The files, (%2G,vals) and (%21,vals) contain values generated during

the runs in sections

3.2.1 and 3.2.2 respectively. As in the

verification of section 3.1,.3, the minimum and maxinum values of X are
at nodes 1 and 2 respectively, >

time= & msec.

(D1)
(C2) LOADFILE (%21, VALS);

[DSK, AK1G]

%21 VALS DSK AK1G being loaded

loading done

“time= 308 msec.

(02)

DONE

(C3) FTL:FUNCTIONAL«FACTOR;

time= 14 msec.

(03)

(C4) (LOADFILE (%2G, VALS) ;

(A(2) + A(1)) E ]

_______________ )
2 (X -X) 1

2 | )

]

(A(2) + A(1)) E ]

SRR« o LIS “TER0E &% MY )

2 X -X) 1

2 1 ]

]

(A(2) + A(1)) E ]

_______________ )|

2 (X -X) )

2 1 ]
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%2G VALS [SK AKLIG being loaded
loading done

time= 377 msec.

() DONE

(CS) FTL2:FUNCTIONALWFACTOR;
time= 18 msec.
(DS) MATRIX(I- E (XMIN - XIAX) (A(2) XMIN - A{1) XMIN + A(2) XMAX

3
- A1) XPAX + 2 A(1) X -2 X A(2))/(2 (X -X) )],
2 1 2 1

.

[E (XMIN - XMAX) (A(2) XMIN - A(1) XMIN + A(2) XMAX - A(Ll) XIMAX
3
+ 2A) X -2X A@2NN/2 (X -X1))],
2 1 2 1
[- E (XIIN = XMAX) (A(2) XMIN - A(1) XMIN + A(2) XMAX - A(1) XMAX

3 H

+Z AN X 2R AENDC U = X0 a0
2 1 2 1 . i
(CE) FACTOR(EV (%, XMIN=X (1], XMAX=X [2]1) ) ; :

time= 711 msec.
[ (A(2) + A(1)) E ]

e o i
( 2 (X -X) ] 1
[ %l ]
( ] ‘
[ (A2) + A(1)) E ]

(06) [ = e ] ,
[ 2 X -X) 1
[ 2 5! ] {
[ 1z
[ <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>